首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330842篇
  免费   38491篇
  国内免费   23385篇
电工技术   27832篇
技术理论   24篇
综合类   32255篇
化学工业   38149篇
金属工艺   13252篇
机械仪表   21148篇
建筑科学   21886篇
矿业工程   9020篇
能源动力   10849篇
轻工业   17833篇
水利工程   8652篇
石油天然气   15208篇
武器工业   4149篇
无线电   33158篇
一般工业技术   35963篇
冶金工业   9827篇
原子能技术   5064篇
自动化技术   88449篇
  2024年   729篇
  2023年   4563篇
  2022年   8662篇
  2021年   11421篇
  2020年   10491篇
  2019年   8987篇
  2018年   8777篇
  2017年   10828篇
  2016年   13311篇
  2015年   15302篇
  2014年   21685篇
  2013年   21549篇
  2012年   22596篇
  2011年   23424篇
  2010年   18140篇
  2009年   19546篇
  2008年   19390篇
  2007年   22584篇
  2006年   20102篇
  2005年   16919篇
  2004年   13617篇
  2003年   12068篇
  2002年   10317篇
  2001年   8034篇
  2000年   7652篇
  1999年   5903篇
  1998年   4807篇
  1997年   4385篇
  1996年   4202篇
  1995年   4148篇
  1994年   3670篇
  1993年   2403篇
  1992年   2225篇
  1991年   1651篇
  1990年   1305篇
  1989年   1155篇
  1988年   971篇
  1987年   574篇
  1986年   413篇
  1985年   573篇
  1984年   597篇
  1983年   586篇
  1982年   473篇
  1981年   501篇
  1980年   365篇
  1979年   195篇
  1978年   148篇
  1977年   107篇
  1975年   72篇
  1962年   70篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
51.
PEMFC system is a complex new clean power system. Based on MATLAB/Simulink, this paper develops a system-level dynamic model of PEMFC, including the gas supply system, hydrogen supply system, hydrothermal management system, and electric stack. The neural network fits the electric stack model to the simulation data. The effects of different operating conditions on the PEMFC stack power and system efficiency are analyzed. Combining the power of the reactor and the system efficiency to define the integrated performance index, the particle swarm optimization (PSO) algorithm is introduced to optimize the power density and system efficiency of the PEMFC with multiple objectives. The final optimal operating point increases the power density and system efficiency by 1.33% and 12.8%, respectively, which maximizes the output performance and reduces the parasitic power.  相似文献   
52.
On-site produced hydrogen from ammonia decomposition can directly fuel solid oxide fuel cells (SOFCs) for power generation. The key issue in ammonia decomposition is to improve the activity and stability of the reaction at low temperatures. In this study, proton-conducting oxides, Ba(Zr,Y) O3-δ (BZY), were investigated as potential support materials to load Ni metal by a one-step impregnation method. The influence of Ni loading, Ba loading, and synthesis temperature, of Ni/BZY catalysts on the catalytic activity for ammonia decomposition were investigated. The Ni/BZY catalyst with Ba loading of 20 wt%, Ni loading of 30 wt%, and synthesized at 900 °C attained the highest ammonia conversion of 100% at 600 °C. The kinetics analysis revealed that for Ni/BZY catalyst, the hydrogen poisoning effect for ammonia decomposition was significantly suppressed. The reaction order of hydrogen for the optimized Ni/BZY catalyst was estimated as low as ?0.07, which is the lowest to the best of our knowledge, resulting in the improvement in the activity. H2 temperature programmed reduction and desorption analysis results suggested that a strong interaction between Ni and BZY support as well as the hydrogen storage capability of the proton-conducting support might be responsible for the promotion of ammonia decomposition on Ni/BZY. Based on the experimental data, a mechanism of hydrogen spillover from Ni to BZY support is proposed.  相似文献   
53.
Water electrolysis is the most clean and high-efficiency technology for production of hydrogen, an ultimate clean energy in future. Highly efficient non-noble electrocatalysts for hydrogen evolution reaction (HER) are desirable for large scale production of hydrogen by water electrolysis. Especially, exposing as many active sites as possible is a vital way to improve activities of the catalysts. Herein, a series of new hydrangea like composite catalysts of ultrathin Mo2S3 nanosheets assembled uprightly and interlacedly on N, S-dual-doped graphitic biocarbon spheres were facilely prepared. The unique structure endowed the catalysts highly exposed edge active sites and prominently high activities for HER. Especially, the optimized catalyst Mo2S3/NSCS-50 exhibited as low as 106 mV of overpotential at 10 mA/cm2 (denoted as ?10). The catalyst also showed low Tafel slope of 53 mV/dec, low electron transfer resistance of 34 Ω and high stability evidenced by the result that the current density only attenuated 11.7% after 10 h i-t test. The catalyst has shown broad prospect for commercial application in water electrolysis.  相似文献   
54.
Formic acid (HCOOH, FA), a common liquid hydrogen storage material, has attracted tremendous research interest. However, the development of efficient, low-cost and high-stable heterogeneous catalyst for selective dehydrogenation of FA remains a major challenge. In this paper, a simple co-reduction method is proposed to synthesize nitrogen-phosphorus co-functionalized rGO (NPG) supported ultrafine NiCoPd-CeOx nanoparticles (NPs) with a mean size of 1.2 nm. Remarkably, the as-prepared Ni0.2Co0.2Pd0.6-CeOx/NPG shows outstanding catalytic activity for FA dehydrogenation, affording a high TOF value of 6506.8 mol H2 mol Pd?1 h?1 at 303 K and a low activation energy of 17.7 kJ mol?1, which is better than most of the reported heterogeneous catalysts, and can be ascribed to the combined effect of well-dispersed ultrafine NiCoPd-CeOx NPs, modified Pd electronic structure, and abundant active sites. The reaction mechanism of dehydrogenation of FA is also discussed. Furthermore, the optimized Ni0.2Co0.2Pd0.6-CeOx/NPG shows excellent stability over 10th run with 100% conversion and 100% H2 selectivity, which may provide more possibilities for practical application of FA system on fuel cells.  相似文献   
55.
56.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   
57.
Weak acids inhibit the growth of probiotics, such as Saccharomyces boulardii. We explored the tolerance of S. boulardii to different weak acids. S. boulardii had better fermentation ability under lactic acid conditions compared with acetic and butyric acid conditions; however, the budding of S. boulardii was significantly stronger than that of Saccharomyces cerevisiae under acetic acid conditions. Although the surface structure of S. boulardii was destroyed, it produced more daughter cells. S. boulardii metabolites were also significantly different from S. cerevisiae under acidic stress. The growth of S. boulardii under weak acid conditions differed significantly from that of S. cerevisiae. S. boulardii-mediated fingerprints under weak acid conditions were identified as latent biomarkers, related to fructose and mannose metabolism, tricarboxylic acid cycle, and the glycolysis pathway. Identified biomarkers will aid in the genetic engineering of S. boulardii and other Saccharomyces strains for improved acid resistance and biomass yield.  相似文献   
58.
Under the circumstance of perceptual consumption, it is still challenging to grasp consumer's emotions and demands due to the large search space, diversified preferences, and easy fatigue of consumers. To reduce user fatigue and enlarge search space, a novel method was presented to design and optimize the pattern of yarn-dyed plaid fabric using the isolation niche genetic algorithm and rough set theory. Each pattern was encoded as a chromosome based on the real number code. The population was initialized and evolved using INGA to maintain the diversity. The rough set theory was adopted as the fitness function of isolation niche genetic algorithm to extract the consumer's demands. After multiple evolutions, a large set of practical patterns of the yarn-dyed plaid fabric are obtained. Experiments were carried out by 24 testers of different ages and genders. The results prove that the proposed method based on the isolation niche genetic algorithm and rough set theory is feasible and effective, supplying references to the designer.  相似文献   
59.
探讨不同质量浓度雪菊精油对希氏肠球菌(Enterococcus hirae)N47产酪胺的影响机制。利用反转录实时定量聚合酶链式反应分析E. hirae在雪菊精油作用下酪氨酸脱羧途径相关基因的表达情况;利用高效液相色谱法检测不同质量浓度雪菊精油对E. hirae产酪胺的影响。并将E. hirae接入到含不同质量浓度雪菊精油的熏马肠中发酵,评估香肠pH值、菌落总数和酪胺积累量。结果表明:在E. hirae纯培养体系和熏马肠体系中,雪菊精油通过抑制微生物的生长和酪氨酸脱羧途径中tyr DC、tyr P基因的表达,降低酪胺的积累量(P<0.05)。当雪菊精油添加量为1/2最小抑菌浓度(minimal inhibitory concentration,MIC)和MIC时,熏马肠中酪胺的含量分别为78.52 mg/kg和45.83 mg/kg,较对照组分别减少了64.72%和79.41%。  相似文献   
60.
海胆酮是一种酮式类胡萝卜素,主要从海胆及藻类等海洋生物中提取。本文研究海胆酮对乙酰胆碱酯酶(acetylcholinesterase,AChE)的抑制作用,应用酶动力学、荧光光谱、圆二色光谱和分子对接技术研究海胆酮对AChE的抑制机理,并用淀粉样β蛋白片段25~35(amyloid beta-peptide 25-35,Aβ25-35)诱导大鼠肾上腺嗜铬细胞瘤细胞(PC12细胞)建立阿尔茨海默症(Alzheimer’s disease,AD)模型,研究海胆酮对AD细胞模型氧化应激损伤的作用。结果表明,海胆酮有很强的AChE抑制活性,其半抑制质量浓度为(16.29±0.97)μg/mL,抑制常数Ki为3.82 μg/mL,表现为竞争性抑制;海胆酮可诱导AChE二级结构改变,更容易与AChE活性中心氨基酸Ser200、His440、Trp84和Tyr121结合,阻碍底物碘代硫代乙酰胆碱(acetylthiocholine iodide,ATCI)与酶结合,从而引起酶活力降低。海胆酮能有效抑制Aβ25-35诱导PC12细胞的AChE活力,降低丙二醛含量,增加超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活力,减轻Aβ25-35诱导的PC12细胞氧化应激损伤。本研究基于AChE和氧化应激阐明了海胆酮对AD的潜在作用机制,为海胆酮在功能食品、生物医药等领域的应用提供了数据支持和理论根据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号